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A stable semi-discrete central scheme for the two-dimensional
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We derive a second-order, semi-discrete central-upwind scheme for the incompressible 2D Euler equa-
tions in the vorticity formulation. The reconstructed velocity field preserves an exact discrete incompres-
sibility relation. We state a local maximum principle for a fully discrete version of the scheme and prove
it using a convexity argument. We then show how similar convexity arguments can be used to prove that
the scheme maps certain Orlicz spaces into themselves. The consequences of this result on the conver-
gence of the scheme are discussed. Numerical simulations support the expected properties of the scheme.
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1. Introduction

We are interested in approximating solutions of the incompressible 2D Euler equations in the vorticity
formulation

ωt + (uω)x + (vω)y = 0. (1.1)

Here, ω denotes the vorticity and (u, v) denotes the velocity field. The incompressibility condition,
ux + vy = 0, implies that (1.1) can be rewritten in a convective form

ωt + uωx + vωy = 0. (1.2)

While the velocity and the vorticity are connected through a global relation (e.g. via the Biot–Savart
law), the convective form (1.2) shows that the vorticity propagates with a finite speed as long as the
velocity remains bounded.

The existence of a finite speed of propagation and the conservative form (1.1) motivate us to use
schemes that were originally developed for hyperbolic conservation laws for approximating solutions of
(1.1). In this work we focus on high-order Godunov-type central schemes of which the prototypes are
the first-order Lax–Friedrichs (LxF) scheme (Friedrichs & Lax, 1971) and the second-order Nessyahu–
Tadmor scheme (Nessyahu & Tadmor, 1990). The main advantage of central schemes is that they avoid
Riemann problems (by averaging over the Riemann fans) which makes them particularly suitable for
multi-dimensional problems and complicated geometries. In order to reduce the somewhat excessive
numerical dissipation of the LxF scheme, various high-order methods have been developed in the past
years (see Tadmor, 1998, and the references therein).

In a previous work (Levy & Tadmor, 1997) we derived a second-order fully discrete approximation
of (1.1). Our method was based on the 2D scheme of Jiang & Tadmor (1998) with a particular choice of
a velocity reconstruction that preserves an exact discrete incompressibility relation. This property then
allowed us to state and prove a local maximum principle on our scheme. A related work (Kupferman &
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Tadmor, 1997) dealt with fully discrete central schemes for the Euler and the Navier–Stokes equations
in the velocity formulation.

In this work we present a second-order semi-discrete scheme that is based on the semi-discrete
scheme of Kurganov and Tadmor for hyperbolic conservation laws (Kurganov & Tadmor, 2000). Due to
the structure of the scheme, the velocity reconstruction of Levy & Tadmor (1997) has to be replaced by
a different velocity reconstruction that preserves an exact discrete incompressibility relation (one that
suits the new scheme). We state and prove a local maximum principle for a fully discrete version of
the scheme. This is done in two stages. First, a theorem is proved for a forward Euler discretization
of the time derivative. This result is then extended to second- and third-order Runge–Kutta methods, at
least those that can be written as a convex combination of first-order forward Euler methods (following
Gottlieb et al., 2001; Shu, 1988; Shu & Osher, 1988). A similar result is stated for certain multi-level
Runge–Kutta schemes.

Following the work of Lopes Filho et al. (2000), we show that the convexity argument that is used
to prove the maximum principle also implies that the evolution mapping for our scheme, ω(·, 0) �→
ω(·, tn), maps any Orlicz space into itself, i.e. the method is H−1

loc -stable. In view of Lopes Filho et al.
(2000), this result can serve as a step in proving the convergence of the scheme, at least for its first-order
version.

We note in passing that certain variations in this scheme can be found in several places: a third-order,
semi-discrete central scheme for the Euler and the Navier–Stokes equations was derived in Kurganov &
Levy (2000). No theoretical results were provided there. Another related work is on the vorticity–
streamfunction formulation of the incompressible 2D Navier–Stokes equations (Kupferman, 2001).
There, the central scheme of Kurganov & Tadmor (2000) was used for the discretization of the con-
vective term only, the velocity reconstruction was based on a misinterpretation of the results of Levy &
Tadmor (1997) and the overall scheme was implicit. More details will be provided in Section 3.

This paper is organized as follows: In Section 2 we briefly review the derivation of semi-discrete
central schemes for 2D hyperbolic conservation laws. Our scheme for the 2D incompressible Euler
equations is then presented in Section 3. In Section 4 we state and prove a local maximum principle
for our scheme. Convergence issues are discussed in Section 5. We conclude Section 6 with numerical
simulations that demonstrate the desired properties of the scheme.

2. Semi-discrete central schemes for conservation laws

We consider the 2D conservation law

wt + f (w)x + g(w)y = 0, (2.1)

subject to the initial data, w(x, y, 0) = w0(x, y). We are interested in approximating solutions of (2.1)
that are computed in terms of cell-averages on a computational grid with cells I j,k of a fixed dimension
�x × �y that are centered around (x j , yk) = j�x, k�y.

Following Kurganov & Tadmor (2000), we start with known cell-averages on I j,k at time tn , w̄n
j,k ,

which are then used to reconstruct a non-oscillatory piecewise-linear function of the form

w̃(x, y, tn) =
∑
j,k

[
w̄n

j,k + (wn
x ) j,k(x − x j ) + (wn

y) j,k(y − yk)
]
χ j,k(x, y). (2.2)

Here, χ j,k(x, y) is the characteristic function of the cell I j,k and (wn
x ) j,k, (w

n
y) j,k are approximations

of the derivatives in the x- and y-directions, respectively. In order to avoid spurious oscillations, these
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derivatives should be estimated using non-linear limiters (Sweby, 1984). One possible option is the
MinMod limiter: for 1 � θ � 2, set

(wn
x ) j,k =MM

(
θ
w̄n

j,k − w̄n
j−1,k

�x
,
w̄n

j+1,k − w̄n
j−1,k

2�x
, θ

w̄n
j+1,k − w̄n

j,k

�x

)
, (2.3)

(wn
y) j,k =MM

(
θ
w̄n

j,k − w̄n
j,k−1

�y
,
w̄n

j,k+1 − w̄n
j,k−1

2�y
, θ

w̄n
j,k+1 − w̄n

j,k

�y

)
,

where the MinMod limiter,MM, is given by

MM(x1, x2, . . . , xn) =
⎧⎨
⎩

min(xi ), xi � 0, ∀ i,
max(xi ), xi � 0, ∀ i,
0, otherwise.

(2.4)

The reconstruction (2.2) can be used to obtain the point-values at the interfaces, i.e.

w+
j+ 1

2 ,k
= w̄n

j+1,k − �x

2
(wn

x ) j+1,k, w−
j+ 1

2 ,k
= w̄n

j,k + �x

2
(wn

x ) j,k,

w+
j,k+ 1

2
= w̄n

j,k+1 − �y

2
(wn

y) j,k+1, w−
j,k+ 1

2
= w̄n

j,k + �y

2
(wn

y) j,k .

(2.5)

The values in (2.5) can now be used to estimate the maximum local speeds of propagation of information
from the interfaces. These speeds can be estimated as

ax
j+ 1

2 ,k
= max

w∈C
(

w−
j+ 1

2 ,k
,w+

j+ 1
2 ,k

) ρ

(
∂ f

∂w
(w)

)
, ay

j,k+ 1
2

= max
w∈C

(
w−

j,k+ 1
2
,w+

j,k+ 1
2

) ρ

(
∂g

∂w
(w)

)
. (2.6)

Here, ρ(·) denotes the spectral radius and C(a, b) is the curve in the phase space connecting the states
a and b via the Riemann fan. We now use these local speeds of propagation to cover the x–y plane in
a way that is portrayed in Fig. 1. We distinguish between three types of cells: interior, edge and corner
cells. In reality, due to the possibly different speeds from different reconstructions around the corners,
the corner cells may overlap the other cells (unlike Fig. 1). This will make no difference in the semi-
discrete limit since the area of the corner cells is proportional to (�t)2 and hence their contribution will
vanish in the limit �t → 0.

Similar to other Godunov-type schemes, the reconstruction (2.2) can now be evolved in time in each
rectangle and projected on cell-averages in these rectangles. The result is then averaged back to the
original mesh using another non-oscillatory reconstruction. In such a way we get the cell-averages at
the next time-step, w̄n+1

j,k . A semi-discrete scheme is then obtained in the limit as �t → 0, i.e.

d

dt
w̄ j,k = lim

�t→0

w̄n+1
j,k − w̄n

j,k

�t
= · · ·

We skip the details (these can be found in Kurganov & Tadmor, 2000). The resulting 2D, semi-discrete,
central scheme is given by

d

dt
w̄ j,k = −

H x
j+ 1

2 ,k
− H x

j− 1
2 ,k

�x
−

H y

j,k+ 1
2

− H y

j,k− 1
2

�y
. (2.7)
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FIG. 1. Covering the x–y plane.

Here, we use the standard notations for the fixed mesh ratios, i.e. λ = �t/�x and µ = �t/�y. The
numerical fluxes in the x- and y-directions are given as

H x
j+ 1

2 ,k
=

f

(
w+

j+ 1
2 ,k

)
+ f

(
w−

j+ 1
2 ,k

)
2

−
ax

j+ 1
2 ,k

2

[
w+

j+ 1
2 ,k

− w−
j+ 1

2 ,k

]
,

H y

j,k+ 1
2

=
g

(
w+

j,k+ 1
2

)
+ g

(
w−

j,k+ 1
2

)
2

−
ay

j,k+ 1
2

2

[
w+

j,k+ 1
2

− w−
j,k+ 1

2

]
.

(2.8)

The local speeds of propagation, ax
j+ 1

2 ,k
, ay

j,k+ 1
2
, are given by (2.6), and the point-values, w±

j+ 1
2 ,k

, w±
j,k+ 1

2
,

are given by (2.5).

REMARKS

1. A similar scheme with a reduced dissipation was derived in Kurganov et al. (2001). This was done
by collecting somewhat more accurate information regarding the local speeds of propagation, i.e.
instead of assuming identical local speeds of propagation to the right and to the left (in the x-
and y-coordinates), it is possible to provide different bounds on the maximum possible speed of
propagation in each direction which is precisely what was done in Kurganov et al. (2001).

2. The scheme (2.7)–(2.8) together with the MinMod approximation of the derivatives (2.3) is second-
order accurate in space. The accuracy in time is determined by the accuracy of the ODE solver.
The order of accuracy of the method can be easily increased by using a more accurate reconstruc-
tion and a high-order ODE solver. Examples for such schemes can be found in Kurganov & Levy
(2000) and Kurganov & Petrova (2001).

3. The main motivation for writing schemes in a semi-discrete form was in order to have a convenient
treatment for dissipative terms. Since this will become handy when we comment later on the
Navier–Stokes equations, we briefly comment on a possible discretization of such terms. Starting
from a convection–diffusion equation of the form

wt + f (w)x + g(w)y = Qx (w,wx , wy)x + Qy(w,wx , wy)y, (2.9)
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an approximation of (2.9) can be written as

d

dt
w̄ j,k = −

H x
j+ 1

2 ,k
− H x

j− 1
2 ,k

�x
−

H y

j,k+ 1
2

− H y

j,k− 1
2

�y
+

Px
j+ 1

2 ,k
− Px

j− 1
2 ,k

�x
+

P y

j,k+ 1
2

− P y

j,k− 1
2

�y
.

The convective fluxes, H x , H y , are given by (2.8), while the diffusion fluxes, Px , P y , can be
obtained with a simple centered differencing:

Px
j+ 1

2 ,k
= 1

2

[
Qx

(
w̄ j,k,

w̄ j+1,k − w̄ j,k

�x
, (wn

y) j,k

)
+ Qx

(
w̄ j+1,k,

w̄ j+1,k − w̄ j,k

�x
, (wn

y) j+1,k

)]
,

P y

j,k+ 1
2

= 1

2

[
Qy

(
w̄ j,k, (w

n
x ) j,k,

w̄ j,k+1 − w̄ j,k

�y

)
+ Qy

(
w̄ j,k+1, (w

n
x ) j,k+1,

w̄ j,k+1 − w̄ j,k

�y

)]
.

3. A scheme for the incompressible Euler equations

In this section we present a semi-discrete central scheme for the 2D incompressible Euler equations.
This is done by making the necessary adjustments to the scheme (2.7)–(2.8). We start with the conser-
vative formulation of the vorticity equation

ωt + (uω)x + (vω)y = 0. (3.1)

The incompressibility condition, ux + vy = 0, allows us to rewrite (3.1) in the convective form

ωt + uωx + vωy = 0. (3.2)

As long as the velocity field (u, v) remains bounded, (3.2) implies a finite speed of propagation. We
approximate solutions of (3.1) as follows. Given cell-averages of the vorticity at time tn , ω̄n

j,k , we first
reconstruct a non-oscillatory piecewise-linear interpolant (compare with (2.2))

ω(x, y, tn) =
∑
j,k

[
ω̄n

j,k + (ωn
x ) j,k(x − x j ) + (ωn

y) j,k(y − yk)
]
χ j,k(x, y). (3.3)

The discrete derivatives of the vorticity, (ωn
x ) j,k and (ωn

y) j,k , are computed with the MinMod limiter
(2.3). The scheme (2.7)–(2.8) when written for the time evolution of the cell-averages of the vorticity
reads

d

dt
ω̄ j,k = −

H x
j+ 1

2 ,k
− H x

j− 1
2 ,k

�x
−

H y

j,k+ 1
2

− H y

j,k− 1
2

�y
, (3.4)

with numerical fluxes that are given as

H x
j+ 1

2 ,k
=

u j+ 1
2 ,k

(
ω+

j+ 1
2 ,k

+ ω−
j+ 1

2 ,k

)
2

−
ax

j+ 1
2 ,k

2

[
ω+

j+ 1
2 ,k

− ω−
j+ 1

2 ,k

]
,

H y

j,k+ 1
2

=
v j,k+ 1

2

(
ω+

j,k+ 1
2

+ ω−
j,k+ 1

2

)
2

−
ay

j,k+ 1
2

2

[
ω+

j,k+ 1
2

− ω−
j,k+ 1

2

]
.

(3.5)

The point-values of the vorticity, ω±
j+ 1

2 ,k
, ω±

j,k+ 1
2
, are computed from the reconstruction (3.3). As long

as it is valid to switch to the convective formulation of the vorticity equation (3.2), we can set the local
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FIG. 2. The reconstruction of the velocity field.

speeds of propagation as ax
j+ 1

2 ,k
= |u j+ 1

2 ,k |, ay

j,k+ 1
2

= |v j,k+ 1
2
|. All that remains is to obtain the values

of the velocity field on the interfaces, i.e. u j+ 1
2 ,k, v j,k+ 1

2
(consult Fig. 2).

One possible way of computing these velocities is the following: first, obtain the values of the
streamfunction at the integer grid-points by solving the 5-point Laplacian

�ψ jk = −ω̄n
jk . (3.6)

The point-values of the streamfunction can be then used to define the velocity field as

u j+ 1
2 ,k = 1

2�y

(
ψ j,k+1 + ψ j+1,k+1

2
− ψ j,k−1 + ψ j+1,k−1

2

)
,

v j,k+ 1
2

= 1

2�x

(
−ψ j+1,k + ψ j+1,k+1

2
+ ψ j−1,k + ψ j−1,k+1

2

)
.

(3.7)

Note that the velocities defined in (3.7) satisfy the discrete incompressibility relation

u j+ 1
2 ,k − u j− 1

2 ,k

�x
+

v j,k+ 1
2

− v j,k− 1
2

�y
= 0. (3.8)

REMARKS

1. To demonstrate the importance of the discrete incompressibility condition (3.8), we assume a
constant vorticity, ω̄n = Const. Then a necessary consistency condition for ω̄n+1 to retain the
same constant value is precisely (3.8).

2. Following the scheme for convection–diffusion equations of the form (2.9), it is straightforward
to extend this scheme to the Navier–Stokes equations. This was done in the third-order case in
Kurganov & Levy (2000). Another second-order scheme for the Navier–Stokes equations in a
vorticity–streamfunction formulation was proposed in Kupferman (2001). There, however, the
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reconstruction of the velocities was based on a misinterpretation of the results of Levy & Tadmor
(1997). The procedure that was proposed in Kupferman (2001, p. 9) for the reconstruction of the
velocity suggested defining the velocities as an “average of the velocities” on the integer grid-
point, i.e.

u j− 1
2 ,k = 1

2
(u j,k + u j−1,k). (3.9)

Contrary to what was written in Kupferman (2001), the velocity reconstruction of Levy & Tadmor
(1997) made use of (3.9) to define the velocities on the integer grid-points which are exactly where
they were needed for the fully discrete scheme, and not the other way around.

4. A maximum principle

In this section we state a local maximum principle for a fully discrete version of the scheme from
Section 3. First, we state and prove our result for a forward Euler discretization of the time derivative.
An identical result for certain second- and third-order Runge–Kutta methods immediately follows.

THEOREM 4.1 Consider the scheme

ω̄n+1
j,k = ω̄n

j,k − λ

(
H x

j+ 1
2 ,k

− H x
j− 1

2 ,k

)
− µ

(
H y

j,k+ 1
2

− H y

j,k− 1
2

)
, (4.1)

where λ = �t/�x and µ = �t/�y are the fixed mesh ratios, and the numerical fluxes are given by

H x
j+ 1

2 ,k
= 1

2

[(
ω+

j+ 1
2 ,k

+ ω−
j+ 1

2 ,k

)
u j+ 1

2 ,k −
∣∣∣u j+ 1

2 ,k

∣∣∣ (ω+
j+ 1

2 ,k
− ω−

j+ 1
2 ,k

)]
,

H y

j,k+ 1
2

= 1

2

[(
ω+

j,k+ 1
2

+ ω−
j,k+ 1

2

)
v j,k+ 1

2
−

∣∣∣v j,k+ 1
2

∣∣∣ (ω+
j,k+ 1

2
− ω−

j,k+ 1
2

)]
.

(4.2)

We assume that the point-values of the vorticity on the interfaces, ω±
j+ 1

2 ,k
, ω±

j,k+ 1
2
, are given by (3.3),

with a MinMod limiter approximation of the derivative (2.3). We also assume that the discrete velocities
{u j+ 1

2 ,k}, {v j,k+ 1
2
}, satisfy (3.8). Finally, assume the Courant-Friedrichs-Lewy (CFL) condition

max

(
λ max

j,k

∣∣∣u j+ 1
2 ,k

∣∣∣ , µ max
j,k

∣∣∣v j,k+ 1
2

∣∣∣) � 1

4
. (4.3)

Then

min
−1�l�1,−1�m�1

|l|+|m|�1

ω̄n
j+l,k+m � ω̄n+1

j,k � max
−1�l�1,−1�m�1

|l|+|m|�1

ω̄n
j+l,k+m . (4.4)

Proof. The idea is to rewrite the scheme as a convex combination of the participating point-values on
the interfaces which will then provide the desired result in view of the non-linear limiting that is part of
the reconstruction stage. Clearly, the piecewise-linear reconstruction implies that

ω̄n
j,k = 1

4

(
ω−

j+ 1
2 ,k

+ ω+
j− 1

2 ,k
+ ω−

j,k+ 1
2

+ ω+
j,k− 1

2

)
.
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Hence, the scheme (4.1)–(4.2) can be rewritten as

ω̄n+1
j,k =

[
1

4
− λ

2

(
u j+ 1

2 ,k +
∣∣∣u j+ 1

2 ,k

∣∣∣)]
ω−

j+ 1
2 ,k

+ λ

2

(∣∣∣u j+ 1
2 ,k

∣∣∣ − u j+ 1
2 ,k

)
ω+

j+ 1
2 ,k

+
[

1

4
− λ

2

(∣∣∣u j− 1
2 ,k

∣∣∣ − u j− 1
2 ,k

)]
ω+

j− 1
2 ,k

+ λ

2

(∣∣∣u j− 1
2 ,k

∣∣∣ + u j− 1
2 ,k

)
ω−

j− 1
2 ,k

+
[

1

4
− µ

2

(
v j,k+ 1

2
+

∣∣∣v j,k+ 1
2

∣∣∣)]
ω−

j,k+ 1
2

+ µ

2

(∣∣∣v j,k+ 1
2

∣∣∣ − v j,k+ 1
2

)
ω+

j,k+ 1
2

+
[

1

4
− µ

2

(∣∣∣v j,k− 1
2

∣∣∣ − v j,k− 1
2

)]
ω+

j,k− 1
2

+ µ

2

(∣∣∣v j,k− 1
2

∣∣∣ + v j,k− 1
2

)
ω−

j,k− 1
2
. (4.5)

The coefficients of ω±
j± 1

2 ,k
, ω±

j∓ 1
2 ,k

, ω±
j,k± 1

2
, ω±

j,k∓ 1
2

in (4.5) are positive under the CFL condition (4.3).

In addition, due to the discrete incompressibility relation (3.8), these coefficients sum up to 1. Hence,
ω̄n+1

j,k in (4.5) is expressed as a convex combination of ω±
j± 1

2 ,k
, ω±

j∓ 1
2 ,k

, ω±
j,k± 1

2
, ω±

j,k∓ 1
2
. Due to the

properties of the MinMod limiter, the interface values ω± lie in the convex hull of the neighbouring
cell-averages, and this concludes the proof. �

REMARKS

1. Obtaining a maximum principle on the scheme by writing the new values at time tn+1 as a con-
vex combination of the values at the previous time-steps is a method that was used in related
works (see Jiang & Tadmor, 1998, for a fully discrete central scheme for 2D hyperbolic conser-
vation laws, Levy & Tadmor, 1997, for a fully discrete central scheme for the 2D incompressible
Euler equations and Kurganov & Tadmor, 2000, for a semi-discrete central scheme for hyperbolic
conservation laws).

2. The only property of the specific (second-order) MinMod reconstruction that was used in the
proof is that the interface values ω± lie in the convex hull of the neighbouring cell-averages. This
implies that the theorem is valid for any reconstruction that satisfies this property regardless of its
order of accuracy.

3. Since we refer to Kurganov & Tadmor (2000), we note in passing that there were several typos
in Kurganov & Tadmor (2000). The expressions that are given for some of the reconstructed
variables in (4.18) in Kurganov & Tadmor (2000) are wrong. There are also a couple of wrong
signs in equation (5.5) in Kurganov & Tadmor (2000). In addition, the statement of Theorem 5.1 in
Kurganov & Tadmor (2000) is not optimal. Once the new value at time tn+1 is written as a convex
combination of the point-values on the interfaces at time tn , the MinMod limiter allows for a local
bound instead of the global bound used in Kurganov & Tadmor (2000). This observation motivated
the local form of the maximum principle that was stated in this paper. It is straightforward to write
a local maximum theorem also for the case of hyperbolic conservation laws instead of the global
Theorem 5.1 in Kurganov & Tadmor (2000).

4. To avoid confusion we would like to emphasize that the fully discrete version of our semi-discrete
scheme (4.1)–(4.2) is not the fully discrete scheme of Levy & Tadmor (1997). The main difference
between the schemes is that the semi-discrete numerical flux has a significantly reduced numerical
dissipation (compared with the fully discrete flux). In addition, staggering is not present in the
schemes that originate from the semi-discrete formulation.
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TABLE 1 Multi-level methods

η c0 cs

Second-order time differencing
4-level method (s = 2) 3

4 2 0

5-level method (s = 3) 8
9

3
2 0

Third-order time differencing
5-level method (s = 3) 16

27 3 12
11

6-level method (s = 4) 25
32 2 10

7

7-level method (s = 5) 108
125

5
3

30
17

Following Kurganov & Tadmor (2000) we can now extend Theorem 4.1 to higher-order discretiza-
tions in time. Such extensions are straightforward due to the observations of Osher and Shu in Shu
(1988) and Shu & Osher (1988) in which certain Runge–Kutta solvers can be written as a convex com-
bination of forward Euler steps.

COROLLARY 4.1 LetR denote the RHS of (3.4). Consider the following Runge–Kutta methods

ω(1) = ω̄n + �tR[ωn],

ω(l+1) = ηlω
n + (1 − ηl)(ω

(l) + �tR[ω(l)]), l = 1, 2, . . . , s − 1, (4.6)

ω̄n+1 = ω(s),

where for the second-order scheme (s = 2) η1 = 1/2 and for the third-order scheme (s = 3) η1 =
3/4, η2 = 1/3. Assume that the point-values of the vorticity on the interfaces, ω±

j+ 1
2 ,k

, ω±
j,k+ 1

2
, are given

by (3.3) with a MinMod limiter approximation of the derivative (2.3), and that the discrete velocities
satisfy (3.8). Finally, assume that the CFL condition (4.3) holds. Then the scheme (4.6) satisfies the
local maximum principle (4.4).

A similar result holds for multi-level strong stability preserving Runge–Kutta methods (SSP-RK)
(Gottlieb et al., 2001), as stated in the following corollary.

COROLLARY 4.2 LetR denote the RHS of (3.4). Consider the multi-level methods of the form

ωn+1 = η(ωn + c0�tR[ωn]) + (1 − η)(ωn−s + cs�tR[ωn−s]), (4.7)

with coefficients that are given in Table 1. Assume that the point-values of the vorticity on the interfaces,
ω±

j+ 1
2 ,k

, ω±
j,k+ 1

2
, are given by (3.3) with a MinMod limiter approximation of the derivative (2.3), and that

the discrete velocities satisfy (3.8). Finally, assume that the following CFL condition is satisfied:

max

(
λ max

j,k

∣∣∣u j+ 1
2 ,k

∣∣∣ , µ max
j,k

∣∣∣v j,k+ 1
2

∣∣∣) � min
ck

1

4ck
. (4.8)

Then the scheme (4.7) satisfies the local maximum principle (4.4).
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5. Comments on convergence

In this section we follow the ideas of Lopes Filho et al. (2000), and show how the convexity argument
that is used in the proof of Theorem 4.1 implies the H−1

loc -stability of our scheme. We will then comment
on how this result can be potentially used to prove the convergence of a first-order version of the scheme
to a weak solution of the Euler equations. We start with the notion of H−1

loc -stability. We denote by A2

the 2 × 2 anti-symmetric matrices with real entries.

DEFINITION 5.1 The sequence {uε} is called H−1
loc -stable if {ωε = ∇ × uε} is a precompact subset of

C((0, T ); H−1
loc (R2,A2)).

The main result of Lopes Filho et al. (2000) was that H−1
loc -stability is a criterion that excludes the

phenomena of concentrations (i.e. a loss of energy to the small scales of the flow through concentrations
of energy). One of the goals of Lopes Filho et al. (2000) was to identify regularity spaces of initial
vorticities which give rise to weak solutions of the Euler equations with no concentrations. In the
context of rearrangement invariant Banach spaces, such regularity results were obtained for compactly
supported initial vorticities in Lebesgue spaces, L p, p > 1, Orlicz spaces, L(log L)α , α � 1/2, and
Lorenz spaces, L(1,q), 1 � q < 2. Certain extensions were made to spaces that are not rearrangement
invariant. If we denote the Biot–Savart kernel by K , i.e. K (ξ) = ξ⊥/(2π |ξ |2), then the following
theorem applies to rearrangement invariant Banach spaces:

THEOREM 5.1 (Lopes Filho et al., 2000, Corollary 2.2) Let X be a rearrangement invariant Banach
space such that C is dense in X loc which in turn is compactly embedded in H−1

loc (R2). Let {uε} be the
family of approximate solutions associated with the mollified initial vorticity ωε

0 = ηε ∗ ω0 ∈ X . Then
{uε} is strongly compact in L∞([0, T ]; L2

loc(R
2,R2)) and hence it has a strong limit, u(·, t), which is a

weak solution associated with the initial velocity u0 = K ∗ ω0 without concentrations.

In this work, the class of spaces we focus on is the Orlicz spaces L(log L)α with α � 1/2. We recall
that an Orlicz space, Lφ , consists of all measurable functions f such that

∫
φ(| f (x)|) dx < ∞, where

φ is any convex function for which lims→l φ(s)/s = l, l ∈ {0, ∞} (e.g. see Bennett & Sharpley, 1988).
When applied to Orlicz spaces, Theorem 5.1 becomes

THEOREM 5.2 (Lopes Filho et al., 2000, Theorem 2.2) Let ω0 ∈ L(log L)αc (R2) with α � 1/2. Then
there exists a weak solution of the incompressible 2D Euler equations, u(·, t), subject to the initial
condition u0 = K ∗ ω0, with no concentrations.

We note in passing that the borderline case of α = 1/2 refers to sequences of approximate vorticities
that correspond to mollified initial L(log L)1/2 vorticities, but not to general L(log L)1/2 initial vor-
ticities as L(log L)1/2 is not compactly embedded in H−1

loc (R2). See Lopes Filho et al. (2000) for a
counterexample.

Equipped with Theorem 5.2, we are now ready to investigate the H−1
loc -stability of our scheme. We

demonstrate our arguments with the first-order case. Hence, we replace the piecewise-linear recon-
struction (2.2) by a piecewise-constant reconstruction, i.e. ω−

j+ 1
2 ,k

= ω+
j− 1

2 ,k
= ω̄n

j,k for all k and

ω−
j,k+ 1

2
= ω+

j,k− 1
2

= ω̄n
j,k for all j (i.e. all the discrete derivatives in the reconstruction are set to zero).

A first-order fully discrete scheme (with a forward Euler discretization in time) is obtained by making
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the necessary adjustments in (4.5), i.e.

ω̄n+1
j,k = λ

2

(∣∣∣u j+ 1
2 ,k

∣∣∣ − u j+ 1
2 ,k

)
ω̄n

j+1,k + λ

2

(∣∣∣u j− 1
2 ,k

∣∣∣ + u j− 1
2 ,k

)
ω̄n

j−1,k

+
[

1

2
− λ

2

(
u j− 1

2 ,k +
∣∣∣u j− 1

2 ,k

∣∣∣ − u j+ 1
2 ,k +

∣∣∣u j+ 1
2 ,k

∣∣∣)]
ω̄n

j,k

+ µ

2

(∣∣∣v j,k+ 1
2

∣∣∣ − v j,k+ 1
2

)
ω̄n

j,k+1 + µ

2

(∣∣∣v j,k− 1
2

∣∣∣ + v j,k− 1
2

)
ω̄n

j,k−1

+
[

1

2
− µ

2

(
v j,k− 1

2
+

∣∣∣v j,k− 1
2

∣∣∣ − v j,k+ 1
2

+
∣∣∣v j,k+ 1

2

∣∣∣)]
ω̄n

j,k

= λ

2

(∣∣∣u j+ 1
2 ,k

∣∣∣ − u j+ 1
2 ,k

)
ω̄n

j+1,k + λ

2

(∣∣∣u j− 1
2 ,k

∣∣∣ + u j− 1
2 ,k

)
ω̄n

j−1,k

+
[

1 − λ

2

(∣∣∣u j− 1
2 ,k

∣∣∣ +
∣∣∣u j+ 1

2 ,k

∣∣∣) − µ

2

(∣∣∣v j,k− 1
2

∣∣∣ +
∣∣∣v j,k+ 1

2

∣∣∣)]
ω̄n

j,k

+ µ

2

(∣∣∣v j,k+ 1
2

∣∣∣ − v j,k+ 1
2

)
ω̄n

j,k+1 + µ

2

(∣∣∣v j,k− 1
2

∣∣∣ + v j,k− 1
2

)
ω̄n

j,k−1. (5.1)

The last equality holds due to the discrete incompressibility relation (3.8). Note that ω̄n+1
j,k is written

as a convex combination of ω̄n
j,k, ω̄

n
j±1,k, ω̄

n
j,k±1, as long as the following CFL condition is satisfied

(compare with (4.3)):

λ max
j,k

∣∣∣u j+ 1
2 ,k

∣∣∣ + µ max
j,k

∣∣∣v j,k+ 1
2

∣∣∣ � 1. (5.2)

Hence, for any convex φ, (5.1) implies that

φ(ω̄n+1
j,k ) � φ(ω̄n

j,k) + λ

2

(∣∣∣u j+ 1
2 ,k

∣∣∣ − u j+ 1
2 ,k

)
φ(ω̄n

j+1,k) + λ

2

(∣∣∣u j− 1
2 ,k

∣∣∣ + u j− 1
2 ,k

)
φ(ω̄n

j−1,k)

− λ

2

(∣∣∣u j− 1
2 ,k

∣∣∣ +
∣∣∣u j+ 1

2 ,k

∣∣∣) φ(ω̄n
j,k) − µ

2

(∣∣∣v j,k− 1
2

∣∣∣ +
∣∣∣v j,k+ 1

2

∣∣∣) φ(ω̄n
j,k)

+ µ

2

(∣∣∣v j,k+ 1
2

∣∣∣ − v j,k+ 1
2

)
φ(ω̄n

j,k+1) + µ

2

(∣∣∣v j,k− 1
2

∣∣∣ + v j,k− 1
2

)
φ(ω̄n

j,k−1). (5.3)

Summing over all j, k, in (5.3), and once again making use of the discrete incompressibility relation
(3.8), we have ∑

j,k

φ(ω̄n+1
j,k ) �

∑
j,k

φ(ω̄n
j,k). (5.4)

Hence, the total mass of the piecewise-constant approximate solution is non-increasing in time for any
convex φ. This means that for the first-order scheme (5.1), the evolution mapping ω(·, 0) �→ ω(·, tn)
maps any Orlicz space into itself, i.e. the method is H−1

loc -stable. We summarize with the following
theorem:

THEOREM 5.3 Consider the first-order central scheme (5.1) that is complemented with the streamfunc-
tion computation of the velocity field (3.6)–(3.7). Assume that the CFL condition (5.2) is fulfilled.
Then

1. For any convex φ, (5.4) holds.

2. The evolution mapping ω(·, 0) �→ ω(·, tn) maps any Orlicz space into itself.
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FIG. 3. A double shear-layer problem. Left: 128 × 128. Right: 256 × 256. Up: T = 4. Bottom: T = 6.

It is important to note that the result of Theorem 5.3 is insufficient for claiming that the scheme con-
verges to a weak solution of the Euler equations. Passing from the discrete framework that is provided
by the approximation scheme to a suitable continuum framework is an intricate task. In particular, the
convergence theory of Lopes Filho et al. (2000) cannot be applied as is to the velocity field that is de-
fined according to the relations (3.6)–(3.7) since there are no div–curl relations at the differential levels.

Instead of considering the velocity field that is defined by (3.6)–(3.7), an alternative approach would
be to start from the discrete vorticity that is provided by the scheme and reconstruct a piecewise-constant
vorticity (for the first-order equation) of the form

ω�x,�y(x, y, tn) =
∑
j,k

ω̄n
j,kχ j,k(x, y).

This vorticity can be then used to define a global velocity field by (U, V ) = ∇⊥ψ with �ψ = −ω�x,�y .
In such a way, the resulting field is guaranteed to be incompressible, while ∇×(U, V ) = ω. Theorem 5.3
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FIG. 4. A double shear-layer problem. Left: 128 × 128. Right: 256 × 256. Up: T = 8. Bottom: T = 10.

then guarantees that this velocity field converges. We would like to stress that this velocity field is the
second velocity field we need to use (simultaneously). We keep the discrete incompressible velocity
field (3.6)–(3.7) in the intermediate steps of the scheme in order to guarantee the vorticity bounds. Once
we know that the velocity field (U, V ) converges, it still remains to determine the limit. In order to
obtain convergence of this velocity field to a weak solution of the Euler equations, one has to show that
it satisfies the Euler equations in their velocity formulation modulo vanishing H−1-errors. While this
issue seems to be tractable in the present framework, it is beyond the scope of this paper and it is left for
future work.

REMARK The maximum principle that was proved for the second-order scheme in Section 4 was based
on a convexity argument. Hence, it is straightforward to extend Theorem 5.3 to the second-order case.
The convergence arguments are less trivial and may not hold in the second-order case.
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FIG. 5. A double shear-layer problem. Left: 128 × 128. Right: 256 × 256. Up: T = 12. Bottom: T = 14.

6. Numerical results

In this section we use our second-order scheme (4.1), (4.2), (3.7), (3.3) and (2.3) to approximate solu-
tions of the incompressible Euler equations (1.1) in a doubly periodic box [0, 2π) × [0, 2π). The test
case we consider is of a double shear-layer model taken from Bell et al. (1989). The initial velocity
field is given by

u(x, y, 0) =
⎧⎨
⎩

tanh
(

1
ρ

(
y − π

2

))
, y < π,

tanh
(

1
ρ

(
3π
2 − y

))
, y � π,

v(x, y, 0) = δ sin(x). (6.1)

In our simulations we set the “thick” shear-layer parameter as ρ = π/15, and the perturbation parameter
is taken as δ = 0.05.
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For the time marching method we use a second-order SSP-RK method. The derivatives are computed
with the MinMod limiter (2.3), where θ = 1.3. In Figs 3–5, we show the results obtained at time
T = 4, 6, 8, 10, 12, 14 on a uniform grid with N = 128 and N = 256 grid-points in the x- and
y-directions. These figures are in agreement with the results we obtained with our third-order semi-
discrete scheme (Kurganov & Levy, 2000) and with the second-order fully discrete scheme (Levy &
Tadmor, 1997).
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